رده بندی گروه های متناهی با زیرگروه های آبلی ti(یا qti)

پایان نامه
چکیده

زیرگروه h از گروه متناهی g را ti-زیرگروه نامیم هرگاه به ازی هر x ? g، h?h^x=h یا h?h^x=1. همچنین زیرگروه h را qti-زیرگروه نامیم هرگاه به ازای هر عضو نابدیهی از h مانند x داشته باشیم مرکزساز x در g مشمول نرمال ساز h در g باشد. گروه متناهی g را ti یا qti-گروه نامیم هرگاه هر زیرگروه آن ti یا qti باشد. همچنین گروه g را ati یا aqti نامیم هرگاه هر زیرگروه آبل آن ti یا qti-زیرگروه باشد. هدف ما در این پایان نامه مطالعه ی ati، ti و aqti-گروه های متناهی و همچنین دسته بندی کاملی از آنها است.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی درجه آبلی زیرگروه های یک گروه متناهی ناآبلی

هدف اصلی ای پایان نامه بررسی درجه آبلی گروه های متناهی است. درجه آبلی یک گروه g احتمال جابجایی دو عضو از گروه است. سعی می کنیم کران هایی برای درجه آبلی گروه های متناهی ناآبلی ارئه نمائیم. بریا یک گروه متناهی g و زیرگروه h از g وابستگی درجه آبلی h در g احتمال آن است که عنصری از h با عنصری از g جابجا شود. همجنین مجموعه ای از تمام وابستگی درجات آبلی از زیرگروه های g را با نماد (d(g نمایش داده می ش...

توان های سرشت های تحویل ناپذیر گروه های متناهی

فرض کنیم x یک سرشت تحویل ناپذیر از یک گروه متناهی ناآبلی G باشد. برای اعداد صحیح نا منفی n و m با شرط m + n > 0، در این مقاله حالتی که تمام موسس های تحویل ناپذیر سرشت xn xm سرشت های خطی G هستند مورد بحث قرار می گیرد. در مقاله ای ریاضی دان معروف به نام مان ثابت کرد که اگر G یک گروه متناهی و x یک سرشت تحویل ناپذیر G باشد و تمام موسس های تحویل ناپزیر x2 خطی باشند، آن گاه (Ǵ≤Z(G و لذا G گروهی پوچ ت...

متن کامل

درجه نرمال بودن زیرگروه گروه های متناهی

درجه جابجایی یک گروه یکی از مفاهیم تعریف شده در نظریه احتمالی گروه هاست، که می تواند نقش مهمی در معرفی خواص و برخی ساختار آن گروه داشته باشد.این درجه برای اولین باردر سال 1944 توسط میلر معرفی شد، که با استفاده از آن توانست احتمال جابه جا شدن دو عنصر دلخواه در یک گروه متناهی را به دست آورد در این پایان نامه به معرفی درجه جابجایی یک گروه متناهی و تعمیم های حاصل از آن پرداخته شده است، یکی از تعمی...

15 صفحه اول

گروه های متناهی با زیرگروه های مینیمال c-تکمیل

زیرگروه h از گروه متناهی g، c-تکمیل نامیده می شود هرگاه زیرگروه k چنان موجود باشد که hk=g و مقطع h و k در مغز h در g قرار گیرد. هدف تعیین ساختار گروه g بر اساس زیرگروه مینیمال از زیرگروه فیتینگ تعمیم یافته g که c-تکمیل است می باشد. همچنین نتایج بدست آمده را به مبحث تشکل ها تعمیم داده ایم.

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023